ag凯发国际网址 > 高考资讯 >

高考数学知识点及公式大全一览-ag凯发国际网址

时间: 梦荧 高考资讯

数学是研究数量、结构、变化、空间以及信息等概念的一门学科,以下是小编整理的一些高考数学知识点及公式,仅供参考。

高考数学重要知识点

一、平面的基本性质与推论

1、平面的基本性质:

公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

公理2过不在一条直线上的三点,有且只有一个平面;

公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

2、空间点、直线、平面之间的位置关系:

直线与直线—平行、相交、异面;

直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);

平面与平面—平行、相交。

3、异面直线:

平面外一点a与平面一点b的连线和平面内不经过点b的直线是异面直线(判定);

所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

两条直线不是异面直线,则两条直线平行或相交(反证);

异面直线不同在任何一个平面内。

求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

二、空间中的平行关系

1、直线与平面平行(核心)

定义:直线和平面没有公共点

判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

2、平面与平面平行

定义:两个平面没有公共点

判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

三、空间中的垂直关系

1、直线与平面垂直

定义:直线与平面内任意一条直线都垂直

判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

性质:垂直于同一直线的两平面平行

推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

2、平面与平面垂直

定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

判定:一个平面过另一个平面的垂线,则这两个平面垂直

性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

四、导数

(一)导数第一定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即导数第一定义

(二)导数第二定义

设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f(x0) ,即 导数第二定义

(三)导函数与导数

如果函数 y = f(x) 在开区间 i 内每一点都可导,就称函数f(x)在区间 i 内可导。这时函数 y = f(x) 对于区间 i 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y, f(x), dy/dx, df(x)/dx。导函数简称导数。

(四)单调性及其应用

1.利用导数研究多项式函数单调性的一般步骤

(1)求f(x)

(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数

2.用导数求多项式函数单调区间的一般步骤

(1)求f(x)

(2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间

学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。

五、高中数列基本公式:

1、一般数列的通项an与前n项和sn的关系:an=

2、等差数列的通项公式:an=a1 (n-1)d an=ak (n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式

当d≠0时,sn是关于n的二次式且常数项为0;当d=0时(a1≠0),sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1qn-1an= akqn-k

(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,sn=n a1 (是关于n的正比例式);

六、高中数学中有关等差、等比数列的结论

1、等差数列{an}的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m- s3m、……仍为等差数列。

2、等差数列{an}中,若m n=p q,则

3、等比数列{an}中,若m n=p q,则

4、等比数列{an}的任意连续m项的和构成的数列sm、s2m-sm、s3m-s2m、s4m- s3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a d;四个数成等差的设法:a-3d,a-d,,a d,a 3d

10、三个数成等比数列的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3

七、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:元素的确定性;元素的互异性;元素的无序性.

3、集合的表示:

(1)如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(2).用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

4、集合的表示方法:列举法与描述法。

常用数集及其记法:非负整数集(即自然数集)记作:n正整数集n__或n 整数集z有理数集q实数集r

5.关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集合a记作a∈a,相反,a不属于集合a记作a?a

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

6、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}=φ

八、集合间的基本关系

1.“包含”关系—子集注意:a?b有两种可能(1)a是b的一部分,;(2)a与b是同一集合。反之:集?b或b??a合a不包含于集合b,或集合b不包含集合a,记作a?

2.“相等”关系:对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时,集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,即:a=b

①任何一个集合是它本身的子集。即a?a

②如果a?b,且a?b那就说集合a是集合b的真子集,记作a b(或ba)

③如果a?b,b?c,那么a?c

④如果a?b同时b?a那么a=b

3.不含任何元素的集合叫做空集,记为φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算

1.交集的定义:一般地,由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.

记作a∩b(读作"a交b"),即a∩b={x|x∈a,且x∈b}.

2、并集的定义:一般地,由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集。记作:a∪b(读作"a并b"),即a∪b={x|x∈a,或x∈b}.

3、交集与并集的性质:a∩a=a,a∩φ=φ,a∩b=b∩a,a∪a=a,

a∪φ=a,a∪b=b∪a.

4、全集与补集

(1)补集:设s是一个集合,a是s的一个子集(即a?s),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)记作:csa即csa={x?x?s且x?a}

(2)全集:如果集合s含有我们所要研究的各个集合的全部元素,看作一个全集。通常用u来表示。

(3)性质:⑴cu(cua)=a⑵(cua)∩a=φ⑶(cua)∪a=u

九、函数的有关概念

合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b为从集合a到集合b的一个函数.记作:y=f(x),x∈a.其中,x叫做自变量,x的取值范围a叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域.

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

2.构成函数的三要素:定义域、对应关系和值域

再注意:

(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:

①表达式相同;

②定义域一致(两点必须同时具备)

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的`数轴表示

4.映射一般地,设a、b是两个非空的集合,如果按某一个确定的对应法则f,使对于集合a中的任意一个元素x,在集合b中都有唯一确定的元素y与之对应,那么就称对应f:a?b为从集合a到集合b的一个映射。记作“f:a?b”

给定一个集合a到b的映射,如果a∈a,b∈b.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合a、b及对应法则f是确定的;②对应法则有“方向性”,即强调从集合a到集合b的对应,它与从b到a的对应关系一般是不同的;③对于映射f:a→b来说,则应满足:(ⅰ)集合a中的每一个元素,在集合b中都有象,并且象是唯一的;(ⅱ)集合a中不同的元素,在集合b中对应的象可以是同一个;(ⅲ)不要求集合b中的每一个元素在集合a中都有原象。

5.常用的函数表示法:解析法:图象法:列表法:

6.分段函数在定义域的不同部分上有不同的解析表达式的函数。

(1)分段函数是一个函数,不要把它误认为是几个函数;

(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集

7.函数单调性

(1).设函数y=f(x)的定义域为i,如果对于定义域i内的某个区间d内的任意两个自变量x1,x2,当x1

如果对于区间d上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间d称为y=f(x)的单调减区间.< p="">

注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法

(a)定义法:○1任取x1,x2∈d,且x1

8.函数的奇偶性

(1)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,○则-x也一定是定义域内的一个自变量(即定义域关于原点对称)

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x) f(x)=0,则f(x)是奇函数.9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。

补充不等式的解法与二次函数(方程)的性质

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

十、求动点的轨迹方程的基本步骤。

1、建立适当的坐标系,设出动点m的坐标;

2、写出点m的集合;

3、列出方程=0;

4、化简方程为最简形式;

5、检验。

十一、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

3、相关点法:用动点q的坐标x,y表示相关点p的坐标x0、y0,然后代入点p的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点q轨迹方程,这种求轨迹方程的方法叫做相关点法。

4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

求动点轨迹方程的一般步骤:

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点p(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于x,y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高中数学口诀知识点

一、高中数学公式定理记忆口诀不等式

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

二、高中数学公式定理记忆口诀数列

等差等比两数列,通项公式n项和。两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

首先验证再假定,从k向着k加1,推论过程须详尽,归纳原理来肯定。

三、高中数学公式定理记忆口诀立体几何

点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

四、高中数学公式定理记忆口诀平面解析几何

有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

五、高中数学公式定理记忆口诀集合与函数

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,y=x是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

六、高中数学公式定理记忆口诀复数

虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。箭杆与x轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

七、高中数学公式定理记忆口诀三角函数

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集

高中数学重要公式

抛物线公式

y=ax^2 bx c就是y等于ax的平方加上b

a>0时开口向上

a<0时开口向下

c=0时抛物线经过原点

b=0时抛物线对称轴为y轴

抛物线标准方程:y^2=2px

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2pxy^2=-2p__^2=2pyx^2=-2py

面积公式

圆的体积公式4/3(pi)(r^3)

圆的面积公式(pi)(r^2)

圆的周长公式2(pi)r

正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径

余弦定理b2=a2 c2-2accosb注:角b是边a和边c的夹角

圆的标准方程(x-a)2 (y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2 y2 dx ey f=0注:d2 e2-4f>0

抛物线标准方程y2=2pxy2=-2p__2=2pyx2=-2py

直棱柱侧面积s=c__h斜棱柱侧面积s=c'__h

正棱锥侧面积s=1/2c__h'正棱台侧面积s=1/2(c c')h'

圆台侧面积s=1/2(c c')l=pi(r r)l球的表面积s=4pi__r2

圆柱侧面积s=c__h=2pi__h圆锥侧面积s=1/2__c__l=pi__r__l

弧长公式l=a__ra是圆心角的弧度数r>0扇形面积公式s=1/2__l__r

锥体体积公式v=1/3__s__h圆锥体体积公式v=1/3__pi__r2h

斜棱柱体积v=s'l注:其中s'是直截面面积l是侧棱长

柱体体积公式v=s__h圆柱体v=pi__r2h

椭圆周长计算公式

椭圆周长公式:l=2πb 4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆面积计算公式

椭圆面积公式:s=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

三角函数公式

sin(2kπ α)=sinα

cos(2kπ α)=cosα

tan(2kπ α)=tanα

cot(2kπ α)=cotα

sin(π α)=-sinα

cos(π α)=-cosα

tan(π α)=tanα

cot(π α)=cotα

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

sin(π/2 α)=cosα

cos(π/2 α)=-sinα

tan(π/2 α)=-cotα

cot(π/2 α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2 α)=-cosα

cos(3π/2 α)=sinα

tan(3π/2 α)=-cotα

cot(3π/2 α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈z)

sin(a b)=sinacosb cosasinbsin(a-b)=sinacosb-sinbcosa

cos(a b)=cosacosb-sinasinbcos(a-b)=cosacosb sinasinb

tan(a b)=(tana tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1 tanatanb)

ctg(a b)=(ctgactgb-1)/(ctgb ctga)ctg(a-b)=(ctgactgb 1)/(ctgb-ctga)

倍角公式

tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1 cosa)/2)cos(a/2)=-√((1 cosa)/2)

tan(a/2)=√((1-cosa)/((1 cosa))tan(a/2)=-√((1-cosa)/((1 cosa))

ctg(a/2)=√((1 cosa)/((1-cosa))ctg(a/2)=-√((1 cosa)/((1-cosa))

和差化积

2sinacosb=sin(a b) sin(a-b)2cosasinb=sin(a b)-sin(a-b)

2cosacosb=cos(a b)-sin(a-b)-2sinasinb=cos(a b)-cos(a-b)

sina sinb=2sin((a b)/2)cos((a-b)/2cosa cosb=2cos((a b)/2)sin((a-b)/2)

tana tanb=sin(a b)/cosacosbtana-tanb=sin(a-b)/cosacosb

ctga ctgbsin(a b)/sinasinb-ctga ctgbsin(a b)/sinasinb

某些数列前n项和

1 2 3 4 5 6 7 8 9 … n=n(n 1)/21 3 5 7 9 11 13 15 … (2n-1)=n2

2 4 6 8 10 12 14 … (2n)=n(n 1)12 22 32 42 52 62 72 82 … n2=n(n 1)(2n 1)/6

13 23 33 43 53 63 …n3=n2(n 1)2/41__2 2__3 3__4 4__5 5__6 6__7 … n(n 1)=n(n 1)(n 2)/3

导数公式

y=f(x)=c(c为常数)则f'(x)=0

f(x)=x^n(n不等于0)f'(x)=nx^(n-1)(x^n表示x的n次方)

f(x)=sinxf'(x)=cosx

f(x)=cosxf'(x)=-sinx

f(x)=a^xf'(x)=a^xlna(a>0且a不等于1,x>0)

f(x)=e^xf'(x)=e^x

f(x)=logaxf'(x)=1/xlna(a>0且a不等于1,x>0)

f(x)=lnxf'(x)=1/x(x>0)

f(x)=tanxf'(x)=1/cos^2x

f(x)=cotxf'(x)=-1/sin^2x

导数运算法则

加法法则:(f(x)-g(x))'=f'(x)-g'(x)

减法法则:(f(x) g(x))'=f'(x) g'(x)

乘法法则:(f(x)g(x))'=f'(x)g(x) f(x)g'(x)

除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2

156379
网站地图