ag凯发国际网址 > 高考资讯 >

高考数学重要知识点及公式大全-ag凯发国际网址

时间: 梦荧 高考资讯

知识点就是掌握某个问题/知识的学习要点,那么高考数学重要知识点及公式有哪些呢?以下是小编整理的一些高考数学重要知识点及公式,仅供参考。

高考数学重要知识点及公式

高考数学重要知识点

一、集合有关概念

1. 集合的含义

2. 集合的中元素的三个特性:

(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

(2) 集合的表示方法:列举法与描述法。

? 注意:常用数集及其记法:

非负整数集(即自然数集) 记作:n

正整数集 n__或 n 整数集z 有理数集q 实数集r

1) 列举法:{a,b,c……}

2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?r| x-3>2} ,{x| x-3>2}

3) 语言描述法:例:{不是直角三角形的三角形}

4) venn图:

4、集合的分类:

(1) 有限集 含有有限个元素的集合

(2) 无限集 含有无限个元素的集合

(3) 空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)a是b的一部分,;(2)a与b是同一集合。

反之: 集合a不包含于集合b,或集合b不包含集合a,记作a b或b a

2.“相等”关系:a=b (5≥5,且5≤5,则5=5)

实例:设 a={x|x2-1=0} b={-1,1} “元素相同则两集合相等”

即:① 任何一个集合是它本身的子集。a?a

②真子集:如果a?b,且a? b那就说集合a是集合b的真子集,记作a b(或b a)

③如果 a?b, b?c ,那么 a?c

④ 如果a?b 同时 b?a 那么a=b

3. 不含任何元素的集合叫做空集,记为

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

三、集合的运算

运算类型 交 集 并 集 补 集

定 义 由所有属于a且属于b的元素所组成的集合,叫做a,b的交集.记作a b(读作‘a交b’),即a b={x|x a,且x b}.

由所有属于集合a或属于集合b的元素所组成的集合,叫做a,b的并集.记作:a b(读作‘a并b’),即a b ={x|x a,或x b}).

设s是一个集合,a是s的一个子集,由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集)

数列

1.数列的定义、分类与通项公式

(1)数列的定义:

①数列:按照一定顺序排列的一列数.

②数列的项:数列中的每一个数.

(2)数列的分类:

分类标准类型满足条件

项数有穷数列项数有限

无穷数列项数无限

项与项间的大小关系递增数列an 1>an其中n∈n.

递减数列an 1

常数列an 1=an

(3)数列的通项公式:

如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.

2.数列的递推公式

如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式.

3.对数列概念的理解

(1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性.因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列.

(2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别.

4.数列的函数特征

数列是一个定义域为正整数集n.(或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈n.).

圆与圆的位置关系的判断方法

一、设两个圆的半径为r和r,圆心距为d。

则有以下五种关系:

1、d>r r两圆外离;两圆的圆心距离之和大于两圆的半径之和。

2、d=r r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

3、d=r—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

4、d

5、d

二、圆和圆的位置关系,还可用有无公共点来判断:

1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。

2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。

3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

高考数学函数

1. 函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x) ;

(2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2. 复合函数的有关问题

(1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像c1与c2的对称性,即证明c1上任意点关于对称中心(对称轴)的对称点仍在c2上,反之亦然;

(3)曲线c1:f(x,y)=0,关于y=x a(y=-x a)的对称曲线c2的方程为f(y-a,x a)=0(或f(-y a,-x a)=0);

(4)曲线c1:f(x,y)=0关于点(a,b)的对称曲线c2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈r时,f(a x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

4.函数的周期性

(1)y=f(x)对x∈r时,f(x a)=f(x-a) 或f(x-2a )=f(x) (a>;0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

(6)y=f(x)对x∈r时,f(x a)=-f(x)(或f(x a)= ,则y=f(x)是周期为2 的周期函数;

5.方程k=f(x)有解 k∈d(d为f(x)的值域);

6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

7.(1) (a>;0,a≠1,b>;0,n∈r ); (2) l og a n= ( a>;0,a≠1,b>;0,b≠1);

(3) l og a b的符号由口诀“同正异负”记忆; (4) a log a n= n ( a>;0,a≠1,n>;0 );

8. 判断对应是否为映射时,抓住两点:(1)a中元素必须都有象且唯一;(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象;

9. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为a,值域为b,则有f[f--1(x)]=x(x∈b),f--1[f(x)]=x(x∈a)。

11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12. 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13. 恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;

1.必修课程由5个模块组成:

必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)

必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

选修课程分为4个系列:

系列1:2个模块

选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

系列2:3个模块

选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

选修2-2:导数及其应用、推理与证明、数系的扩充与复数

选修2-3:计数原理、随机变量及其分布列、统计案例

选修4-1:几何证明选讲

选修4-4:坐标系与参数方程

选修4-5:不等式选讲

2.重难点及其考点:

重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

难点:函数,圆锥曲线

高考相关考点:

1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

5.平面向量:初等运算、坐标运算、数量积及其应用

6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

9.直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

10.排列、组合和概率:排列、组合应用题、二项式定理及其应用

11.概率与统计:概率、分布列、期望、方差、抽样、正态分布

12.导数:导数的概念、求导、导数的应用

13.复数:复数的概念与运算

高中数学重要公式

乘法与因式分 a2-b2=(a b)(a-b) a3 b3=(a b)(a2-ab b2) a3-b3=(a-b(a2 ab b2)

三角不等式 |a b|≤|a| |b| |a-b|≤|a| |b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b √(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 x1 x2=-b/a x1__2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

三角函数公式

两角和公式

sin(a b)=sinacosb cosasinb sin(a-b)=sinacosb-sinbcosa

cos(a b)=cosacosb-sinasinb cos(a-b)=cosacosb sinasinb

tan(a b)=(tana tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1 tanatanb)

ctg(a b)=(ctgactgb-1)/(ctgb ctga) ctg(a-b)=(ctgactgb 1)/(ctgb-ctga)

倍角公式

tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctg

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)

cos(a/2)=√((1 cosa)/2) cos(a/2)=-√((1 cosa)/2)

tan(a/2)=√((1-cosa)/((1 cosa)) tan(a/2)=-√((1-cosa)/((1 cosa))

ctg(a/2)=√((1 cosa)/((1-cosa)) ctg(a/2)=-√((1 cosa)/((1-cosa))

和差化积

2sinacosb=sin(a b) sin(a-b) 2cosasinb=sin(a b)-sin(a-b)

2cosacosb=cos(a b)-sin(a-b) -2sinasinb=cos(a b)-cos(a-b)

sina sinb=2sin((a b)/2)cos((a-b)/2 cosa cosb=2cos((a b)/2)sin((a-b)/2)

tana tanb=sin(a b)/cosacosb tana-tanb=sin(a-b)/cosacosb

ctga ctgbsin(a b)/sinasinb -ctga ctgbsin(a b)/sinasinb

某些数列前n项和

1 2 3 4 5 6 7 8 9 … n=n(n 1)/2 1 3 5 7 9 11 13 15 … (2n-1)=n2

2 4 6 8 10 12 14 … (2n)=n(n 1) 12 22 32 42 52 62 72 82 … n2=n(n 1)(2n 1)/6

13 23 33 43 53 63 …n3=n2(n 1)2/4 1x2 2x3 3x4 4x5 5x6 6x7 … n(n 1)=n(n 1)(n 2)/3

正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圆半径

余弦定理 b2=a2 c2-2accosb 注:角b是边a和边c的夹角

圆的标准方程 (x-a)2 (y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2 y2 dx ey f=0 注:d2 e2-4f>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 s=cxh 斜棱柱侧面积 s=cxh

正棱锥侧面积 s=1/2cxh 正棱台侧面积 s=1/2(c c)h

圆台侧面积 s=1/2(c c)l=pi(r r)l 球的表面积 s=4pixr2

圆柱侧面积 s=cxh=2pixh 圆锥侧面积 s=1/2xcxl=pixrxl

弧长公式 l=axr a是圆心角的弧度数r >0 扇形面积公式 s=1/2xlxr

锥体体积公式 v=1/3xsxh 圆锥体体积公式 v=1/3xpixr2h

斜棱柱体积 v=sl 注:其中,s是直截面面积, l是侧棱长

柱体体积公式 v=sxh 圆柱体 v=pixr2h

空间几何体表面积体积公式:

1、圆柱体:表面积:2πrr 2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πr2 πr[(h2 r2)的]体积:πr2h/3(r为圆锥体低圆半径,h为其高,3、a—边长,s=6a2,v=a3

4、长方体a—长,b—宽,c—高s=2(ab ac bc)v=abc

5、棱柱s—h—高v=sh

6、棱锥s—h—高v=sh/3

7、s1和s2—上、下h—高v=h[s1 s2 (s1s2)^1/2]/3

8、s1—上底面积,s2—下底面积,s0—中h—高,v=h(s1 s2 4s0)/6

9、圆柱r—底半径,h—高,c—底面周长s底—底面积,s侧—,s表—表面积c=2πrs底=πr2,s侧=ch,s表=ch 2s底,v=s底h=πr2h

10、空心圆柱r—外圆半径,r—内圆半径h—高v=πh(r^2—r^2)

11、r—底半径h—高v=πr^2h/3

12、r—上底半径,r—下底半径,h—高v=πh(r2 rr r2)/3

13、球r—半径d—直径v=4/3πr^3=πd^3/6

14、球缺h—球缺高,r—球半径,a—球缺底半径v=πh(3a2 h2)/6=πh2(3r—h)/3

15、球台r1和r2—球台上、下底半径h—高v=πh[3(r12 r22) h2]/6

16、圆环体r—环体半径d—环体直径r—环体截面半径d—环体截面直径v=2π2rr2=π2dd2/4

17、桶状体d—桶腹直径d—桶底直径h—桶高v=πh(2d2 d2)/12,(母线是圆弧形,圆心是桶的中心)v=πh(2d2 dd 3d2/4)/15(母线是抛物线形)

二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

高考数学选择填空答题技巧:

选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。

数学填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

2024高考数学解答题的答题技巧以及方法:

数学简答题与主观的填空和选择题不同,它需要有规范的答题技巧,当我们通过对条件的分析找到解题的方法之后,其书写的过程一定要按步骤来进行。

因为高考数学的评分是按照步骤来给分的,关键的步骤不能舍去。所以在答题时尽量的要使用数学符号是比较严谨的,而且其推理思路的过程要缓缓紧扣,否则出现混乱的情况下会被扣分。

156277
网站地图